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SUMMARY

A two-dimensional numerical simulation solving unsteady incompressible Navier–Stokes equations is
used to study the natural varicose instability of a plane jet in the Reynolds number range of 100–900.
A transient train of vortices is observed at the beginning of the computation. It disappears yielding a
steady flow. This flow is then used at the basis for forced excitation in order to study the space time
development of instability. A Reynolds number dependant behaviour is observed which implies that
viscosity directly affects the vortex dynamics. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The near-field of a plane jet has been long studied in many respects and the Kelvin–Helmholtz
instability of the initial shear layer has been found as a key mechanism for the development of
the jet. Most of the work concerned reasonably high Reynolds numbers providing a basis for
an essentially inviscid development of the vortices (Meyer et al. [1], Hussain and Thompson [2],
Thomas and Goldschmidt [3]).

However, one of the first works on the domain conducted by Sato [4] concerned low-
Reynolds number jets and a theoretical study by Tatsumi and Kakutani [5] was conducted on
the basis of a laminar jet profile. This paper aims to study some moderate Reynolds number
flows in which the viscous effect is likely to affect directly the behaviour of the jet.
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As instability is the main concern of this work it should be remembered that according to
Huerre and Monkewitz [6] plane shear layer instability occurs at the exhaust of the jet and
dominates the potential core external flow.

The frequency of the developing vortices is then directly related to the most amplified mode
of instability, first calculated by Michalke [7,8] and corresponding to a given Strouhal number
based on the exhaust velocity of the jet and the momentum thickness of the outgoing initial
shear layer.

Linear analysis theory indicates that the plane shear layer and thus the plane jet can be
classified as convective instabilities (Huerre and Monkewitz [9], Ho and Huerre [10], Yu and
Monkewitz [11]). That means that the amplified perturbations are convected downstream and
the jet acts as an amplifier of initial flow perturbations. Absolute instabilities occurring in
wakes or variable density jets are resonant modes and are observed whatever be the
excitations. However, the case of spatially evolving shear layers and jets is in fact different
from both these theoretical instabilities as a feedback mechanism is observed giving rise to
stable mode response. This can be qualified as global instability and is the situation that is
examined in this paper.

The present study aims to use an incompressible numerical simulation in order to determine
the Reynolds number effect on the initial region of a near jet. For reasons that will be
discussed further, the Reynolds numbers investigated ranged from 100 to 900. In this case
viscous effects can be analysed. We will compare both forced and unforced jet in order to
identify clearly the instability mechanism with respect to the specific length scales of the jet.
Developing vortices are observed and their interactions by pairing are a function of these
previous scales.

In this work different types of excitation are tested but the stress is put on a monochromatic
excitation applied to the exhaust velocity used to stabilize the developing vortices. Results of
these computations can be compared with other studies of the same type (Hussain and
Thompson [2], Hsiao and Huang [12], Faghani et al. [13,14]). However, this paper addresses
directly quite low Reynolds numbers not examined in these experimental papers. Many recent
attempts have been conducted in round jets using direct numerical simulation or large eddy
simulation that show the occurrence of low-order instability modes monitoring the develop-
ment of the near jet region. Among these works we refer more precisely to the simulation of
Danaila et al. [15] dealing with low-Reynolds number flows, a situation comparable with the
one treated in the present paper. These authors have detailed the dynamics of these low-order
modes in an unforced jet. Afterwards, their work was extended to combined excitations in
order to provoke the complex situation of a bifurcating jet [16], a clear example of flow control
by external excitation. The aim of the present paper is to focus on the effect of an excitation
close to a naturally amplified mode. This constitutes a basis for further manipulation in more
complex situations.

In the following we present successively the physical problem and boundary conditions
(Section 2), the numerical method (Section 3), the transient to steady flow (Section 4), the flow
excited by Dirac impulse excitation (Section 5) and the flow excited by sinusoidal oscillation
(Section 6).
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2. THE PHYSICAL PROBLEM

The domain of study is the plane jet issued from a wall and exhausting in an infinite domain
filled with the same fluid. The flow is incompressible isothermal and considered as two-
dimensional. This corresponds to the conditions that have been found by Faghani et al. [13]
and Meyer et al. [17] in an experimental study at moderate Reynolds numbers. Moreover, as
these authors and others have pointed out, the fact that varicose mode is more often observed
for uniform flat velocity profiles at exhaust, the study is restricted to such perturbations and
admits axial two-dimensional symmetry. Thus, half a domain is taken for the numerical
simulation. Many tests have shown that this situation occurs naturally as far as the initial
perturbation does not trend to force antisymmetrical sinuous mode. The flow pattern observed
as a result of this model is not supposed to exist if the full jet is submitted to arbitrary
perturbations as a competition with the sinuous mode may be at the disadvantage of the
varicose mode. However, a monochromatic symmetrical excitation must produce this pattern
as linear stability theory shows that this mode is amplified [18] in a plane jet. Danaila et al. [15]
have observed similar varicose behaviour for round jets in the same Reynolds number range.

The domain is represented in Figure 1. The lateral extent of the domain is the width D
containing the wall and the jet exhaust aperture H. The total length L of the domain is in the
longitudinal direction. The geometry of the jet is such that L/H is constant and equal to 20,
but the extent of the jet D/H is adapted to the lateral extent of the jet and varies with Reynolds
number (see Table I).

Figure 1. Domain and boundary conditions (L/H=20; H=1; D/H=3 or 6).

Table I. Characteristic parameters of the simulation.

Re 100 300 500 700 900

3 36D/H 3 3
150 180180T0 150 120

Re, Reynolds number; D/H, width of the domain; T0, duration of the initial computa-
tion.
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One of the major problems in jet flow computation is the infinite domain and the free
boundary conditions to impose in order to properly take account of this situation. The choice
was crucial here and many tests have been done comparing three main types of outflow
boundary conditions on the longitudinal velocity: (1) Neumann conditions; (2) convective
boundary conditions; and (3) linear extrapolation of inside velocities (or zero second-order
partial derivative of the U velocity at exit). None of them is purely satisfying but with respect
to the discrete scheme used, the last one has been preferred. It corresponds to the choice made
by Meyer et al. [1] and Estivalezes et al. [19].

For the entrainment boundary, the Neumann boundary condition is taken for the lateral
velocity while keeping the longitudinal one at zero. Although rough, this condition seems to
allow a sufficient freedom to the incoming flow as far as the corresponding frontier is put
sufficiently far from the active vortical part of the jet. For the pressure it seems rather
convenient to fix a single value in one position of the domain. The upper left corner provides
the best stabilization of the solution. This choice is the empirical result of some preliminary
tests. It cannot be considered as an absolute necessity but it fits better to the initial and
boundary conditions for the coupled problem in our particular case.

3. NUMERICAL METHOD

The classical finite volume method [20] has been chosen to discretize the problem. The pressure
implicit split operator (PISO) method derived by Issa [21] has been used to solve the
incompressible flow problem ensuring exact mass conservation at each time step. The time step
was maintained sufficiently small to catch the transient behaviour of the flow. A two-corrector
step process is retained in accordance with the theoretical study on stability made by Issa [21].
As this method is widely described, we do not judge it necessary to reproduce its exact
derivation and the corresponding operations. Interested readers are referred to Meyer et al. [1],
Estivalezes et al. [19] and Hannoun et al. [22].

In the following, staggered uniform grids are chosen for lateral, longitudinal velocities and
scalar properties (pressure). The time derivatives are Euler implicit and the space ones are
second-order centred. This choice was made in accordance with the results of Meyer et al. [1],
who tested this approach by comparison with experiments at a Reynolds number of 1700 and
found reasonable agreement. As the viscous effect is more pronounced in the present work, the
centred scheme will be even more adapted.

For these simulations we are interested in the near zone of the jet and this was limited to a
length L=20H. It was found that a value of D=3H is acceptable for all input Reynolds
number greater or equal to 300. However, this size of the domain is not sufficient for lower
Reynolds numbers. It was then necessary to double the width to 6H. For comparison purposes
we kept the mesh size constant at �x=0.196 and �y=0.107, which corresponds to meshes
numbers of 102×28 and 102×56 for each class of Reynolds numbers (respectively greater (or
equal to) and lower (or equal to) than 300). The mesh independence is difficult to verify in this
simulation because reducing the spacing between points will also modify the initial shear layer
thickness at the entrance that has been shown to be the main parameter for determining the
frequency of the instability [1]. This has been checked by comparison of computation results
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between two different meshes at a Reynolds number of 500. A finer grid of 153×42 with
meshes reduced by a factor of 2/3 provides results that are displayed in Figures 2 and 3. The
agreement is considered to be reasonably fair owing to the difference observed on the
frequency of the instability. It has been also checked that after a transient regime the steady
state velocity profiles are not affected when the grid is finer. The time step dictated by accuracy
reasons was put to 10−2 s and the simulation duration is given in Table I. Note that duration
T0 is chosen in order to obtain a steady state after the first transient stage. A minimum value
of T0 is retained for Re=500 in accordance with the results presented in Section 4. The
convergence level for the continuity equation was fixed to 10−9, a condition that maintains the
number of internal iterations for linear systems solutions to a high value. This level of accuracy
was imposed to avoid errors on the mass balance that could have an effect on the onset of
instability. Tests have been performed to fix this level in order to maintain a reasonable
computational effort. For solving these systems, the modified strongly implicit (MSI) method
by Schneider and Zeddan [23] was used.

4. TRANSIENT AND STEADY STATE FLOW REGIME

For the first part of this work, the initial longitudinal velocity profile of the jet was maintained
to a uniform value of 1 in the core region and 0 on the wall. The lateral velocity on the

Figure 2. Time traces of velocity components and pressure at different longitudinal stations of the jet for
a fixed lateral position (y=0.7; Re=500; non-excited jet; grid 102×28).
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Figure 3. Same signals as in Figure 2 with a finer grid (y=0.7; Re=500; non-excited jet; grid 153×42).

entrance boundary is also equal to zero. The mesh size is kept constant. This provides similar
conditions for all tests. Thus, the only parameter tuned when varying the Reynolds number is
the kinematic viscosity of the fluid.

The computations all started from an arbitrary steady state corresponding to an inviscid jet
{U0=1 for 0�y�H/2, U0=V0=0 elsewhere for all x positions}. At the first step of
computation viscosity is added abruptly and introduces an artificial unphysical flow perturba-
tion, even in a short period of time.

As a result of this perturbation, it is observed that a transient phenomenon takes place and
some signals corresponding to the development of a vortex train are presented in Figure 2 for
Re=500. The same is also displayed in Figure 3 for a finer mesh that exhibits the same
behaviour at a slightly different frequency. It should be noticed that this is but an example of
what can be observed at other Reynolds number.

The interesting feature of this transient state is that after some time the oscillations die out
and give rise to a steady state solution. For Re=500 one can appreciate that this state is
nearly reached after about 90 s and that it remains stable during the computation. In the
figure, a period of 120 s is shown but no evolution was noticed while continuing the
computation during another equivalent period of 120 s.

This period for stabilizing the flow is a function of the Reynolds number. If increased up to
900 a longer stabilization period is required because an increasing number of periods are
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observed but the corresponding period of each is shorter. At Re=900 the phenomenon seems
to turn out to a pseudo periodic one and the steady state is not reached in the observation
time. On the other hand, for smaller Reynolds numbers, the period enlarges requiring also a
longer observation time but the number of events is smaller and turns to a single main
oscillation and very small subsequent ones.

Nevertheless, after the stabilization period a steady state flow is observed and the longitudi-
nal velocity profiles are presented in Figure 4 for the last time station of the corresponding
computation. These Figures show that all profiles cross at a lateral distance close to 0.66 for
all Reynolds number but the overall width of the profiles enlarges with Reynolds number. This
signifies that the rate of growth of the jet is affected by an increasing viscous effect when the
Reynolds number decreases. For Re=100, the values inside the domain which are different to

Figure 4. Longitudinal velocity profiles at different x stations (for the steady state at t=120, 150 or 180
s; non-excited jet).
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zero reach y/D=4 and this clearly shows the reason for increasing the initial domain
(y/D=3). For this same case the velocity profile quickly turns to an approximately parabolic
one in the core of the jet and return-flow is observed in the first sections of the jet.

Global parameters resulting from the evolution of the jet are presented in Figure 5. The
frequency of instability in the transient stage (Figure 5(a)) exhibits a nearly linear increase with
the Reynolds number. Similarly, the growth rate of the jet (Figure 5(b)) can be deduced from
the value of b, the conventional width of the jet corresponding to U=0.5U0. It decreases with
the Reynolds number but the decrease is much more important for the lowest values (500–100)

Figure 5. Frequency of vortex crossing (a) and width of the jet at different x stations (b) versus Reynolds
number (non-excited jet).
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than for the highest ones (900–500). At higher Reynolds numbers it has been found that
the initial momentum thickness of the entrance velocity profile dominates the instability
behaviour. The corresponding wavelength of shed vortices is such that pairing sequences
occur in the shear layer around the potential core. In this simulation the vortices in the
shear layer are of the order of the width of the jet entrance or even larger. The potential
core is considerably shorter if it exists. The interaction with the jet column mode is direct.
Thus, the width of the shear layer increases continuously with the Reynolds number and
produces the vortex that is convected downstream.

The conclusion of this first part is that the code converges to a steady state flow
configuration smearing out the effect of the transient. However, the behaviour of the
transient is clearly linked to the Reynolds number. In the sequel, controlled perturbations
will be imposed to this steady state in order to study the non-linear instability around this
state.

5. TRANSIENT FLOW EXCITED BY A DIRAC IMPULSE

An arbitrary perturbation of the flow is first imposed on the form of a sudden impulse of
the initial velocity profile. The impulse intensity is fixed to 5U0 for a single time step of
10−2 s.

�
�
�
�
�
�
�

t=0 Vb (x, y, t=0)=Vb (x, y, T0) 0�x�L ; 0�y�D

t=0.01 Ue(t)=5U0 x=0; 0�y�
H
2

t�0.01 Ue(t)=U0 x=0; 0�y�
H
2

where Vb (x, y, T0) is the initial condition for the steady state obtained at t=T0 for the
velocity field and Ue(t) is the boundary condition.

Velocity and pressure signals are displayed in Figure 6 for a Reynolds number of 500. It
follows that the flow is submitted to an oscillating period and returns to the previous
steady state as in the previous case. This is typically the behaviour of a convective instabil-
ity. Note that the same number of crossing vortices is observed. Moreover, it can be found
that the frequency and the duration of these oscillations are nearly independent of the
amplitude and the duration of the pulse. The test has been made with an amplitude of
1.5U0 on a pulse of 5×10−2 s. The same frequency and the same number of vortices as in
the simulation starting from zero are found.

These results show that the response of the jet in the near region is an intrinsic be-
haviour that selects the most amplified mode. The return to the same stable situation can
indicate that the basic situation is well defined and that the results are quite independent of
the impulse provided that the amplitude and the width of the pulse remain to be reason-
ably small values.
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Figure 6. Time traces of velocity components and pressure at different longitudinal stations of the jet for
a fixed lateral position (y=0.70; Re=500) (jet excited by impulse).

6. FLOW SUBMITTED TO SINUSOIDAL EXCITATION

A sinusoidal excitation is applied to the entrance velocity profile in order to stabilize the
production of organized vortices. The following forced profile is imposed and maintained
throughout the simulation:

�
�
�
�
�

t=0 Vb (x, y, t=0)=Vb (x, y, T0) 0�x�L ; 0�y�D

t�0 Ue(t)=U0[1+� sin(2�fit)] x=0; 0�y�
H
2

where � is the amplitude of the excitation and fi is the forcing frequency.
The value of � was fixed to 0.025 and fi to the previously observed natural frequency for

each Reynolds number. Some preliminary tests have shown that an amplitude of 0.025
provides the best response compared with other different values (ranging from 10−2 to
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2×101). The selected frequency fi corresponds to the optimal receptivity of the incoming flow
to the forcing. Many experimentalists have used the same technique to obtain regular vortex
production and phase locking for the natural excitation frequency of the jet (Ho and Huang
[24], Husain and Hussain [25], Faghani et al. [13] among others).

The signals obtained for Re=500 are shown on Figure 7. It is clear that a periodic
behaviour of the jet is observed; a situation that was expected at the view of the previously
cited studies. It should be noticed that this monochromatic excitation at the natural frequency
does not give rise to pairing phenomena on the studied domain.

The periodicity of the results infers also that the velocity flow is not perturbed by spurious
reflections from the outflow boundary.

The iso-vorticity plots are given in Figure 8 in order to demonstrate the spatial structure of
the flow at a Reynolds number of 500. The simulation starts with the steady flow and
represents duration of 120 s that is to say approximately nine periods. Four different phases
of the motion are caught from t=80 to 110 s.

The wavelength of the vortical structures is such that two events can be clearly identified and
the shed vortex leaves the domain quite smoothly. The lateral expansion of the jet imposes a
corresponding growth of the travelling vortex but as mentioned before pairing is not observed
to the contrary of what was found by Faghani et al. [13] for higher Reynolds numbers.

Figure 7. Time traces of velocity components and pressure at different longitudinal stations of the jet for
a fixed lateral position (y=0.70; Re=500) (jet submitted to sinusoidal excitation: �=0.025, fi=0.077).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 361–374
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Figure 8. Iso-vorticity contours at Re=500 for different time stations (jet submitted to sinusoidal
excitation: �=0.025, fi=0.077).

7. CONCLUSION

The results of this numerical simulation are used to point out the effect of Reynolds number
on the development of instabilities in the near region of a plane jet. They correspond to a
range where the convection is dominant near the axis but the viscous effect is not negligible in
the vortex development.

A fairly simple method is used assuming that the flow is incompressible and the viscosity is
strong enough to prevent from violent effects of partially reflective boundary conditions. The
existence of a final steady state for the computation with constant input velocity seems to give
some credibility to these assumptions.

The fact that this convergence is obtained allows us to examine the response of this flow to
prescribed perturbations performing quite independently from the purely numerical perturba-
tions due to the mismatching of initial conditions with the Navier–Stokes solution at the
beginning of the first stage of computations.
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The analysis of the response to a sudden impulse which is known to provide a broad band
excitation have shown that the flow acts as an oscillator at the natural frequency that appeared
first in the initial transient stage. This trends to confirm the intrinsic nature of the modal response
of the jet.

On the basis of this analysis we have derived the preferred modes for the initial region of the
jet and applied a forced excitation at this frequency in order to study the spatial development
of the flow. This exercise turns out to be fruitful giving precise information on the parameters
of the vortex generation attached to this instability mode.

These simulations tell us that the natural frequency of a jet can be tuned up at quite low
Reynolds numbers and the time and length scales attached to this instability depends significantly
on the viscosity of the flow.

It should be interesting for flow control operations that these parameters could be taken into
account. In some particular low-velocity transport processes, unwanted oscillations can provide
spurious instabilities and, in some others, prescribed forcing can help for installing controlled
quasi-laminar mixing and transfer enhancement.

ACKNOWLEDGMENTS

The authors wish to thank the Director for International Relations of CNRS, the French Ministry of
Foreign Affairs and the General Director of Scientific Research (DGRST) of Tunisia for financial
support to this collaboration between the laboratories of both countries.

APPENDIX A. NOMENCLATURE

half-velocity width of the jet (for U/Ua=0.5)b
D width of the domain

frequencyf
fi forcing frequency

width of the jet (=1)H
length of the domainL
pressurep

Re Reynolds number (U0H/�)
current timet

T0 duration of the initial computation
longitudinal component of velocityU

U0 initial longitudinal velocity (=1)
axial velocityUa

Ue entrance velocity
lateral component of velocityV

Vb (x, y, t) velocity field
space co-ordinatesx, y

Greek letters
� amplitude of the excitation
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�/�x numerical partial derivatives
kinematic viscosity (=1/Re)�
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